Index
B
|
C
|
D
|
E
|
F
|
G
|
L
|
M
|
N
|
P
|
S
|
T
|
U
|
V
|
W
B
backend (transformer_implementation.TransformerConfig.TransformerConfig attribute)
batch_size (transformer_implementation.TransformerConfig.TransformerConfig attribute)
beta1 (transformer_implementation.TransformerConfig.TransformerConfig attribute)
beta2 (transformer_implementation.TransformerConfig.TransformerConfig attribute)
bias (transformer_implementation.TransformerConfig.TransformerConfig attribute)
block_size (transformer_implementation.TransformerConfig.TransformerConfig attribute)
BOS_IDX (transformer_implementation.TransformerConfig.TransformerConfig attribute)
C
compile (transformer_implementation.TransformerConfig.TransformerConfig attribute)
configure_optimizers() (transformer_implementation.Transformer.Transformer method)
D
DataLoaderFactory (class in transformer_implementation.DataLoaderFactory)
ddp (transformer_implementation.TransformerConfig.TransformerConfig attribute)
Decoder (class in transformer_implementation.Decoder)
DecoderBlock (class in transformer_implementation.blocks.DecoderBlock)
device (transformer_implementation.TransformerConfig.TransformerConfig attribute)
device_type (transformer_implementation.TransformerConfig.TransformerConfig attribute)
dropout (transformer_implementation.TransformerConfig.TransformerConfig attribute)
dtype (transformer_implementation.TransformerConfig.TransformerConfig attribute)
E
Encoder (class in transformer_implementation.Encoder)
EncoderBlock (class in transformer_implementation.blocks.EncoderBlock)
EOS_IDX (transformer_implementation.TransformerConfig.TransformerConfig attribute)
eps (transformer_implementation.TransformerConfig.TransformerConfig attribute)
estimate_loss() (in module utils.estimate_loss)
eval_iters (transformer_implementation.TransformerConfig.TransformerConfig attribute)
F
FeedForward (class in transformer_implementation.blocks.layers.FeedForward)
forward() (transformer_implementation.blocks.DecoderBlock.DecoderBlock method)
(transformer_implementation.blocks.EncoderBlock.EncoderBlock method)
(transformer_implementation.blocks.layers.FeedForward.FeedForward method)
(transformer_implementation.blocks.layers.LayerNorm.LayerNorm method)
(transformer_implementation.blocks.layers.MultiHeadAttention.MultiHeadAttention method)
(transformer_implementation.Decoder.Decoder method)
(transformer_implementation.Encoder.Encoder method)
(transformer_implementation.Transformer.Transformer method)
G
generate() (transformer_implementation.Transformer.Transformer method)
generate_padding_mask() (transformer_implementation.Tokenizer.Tokenizer method)
get_batch() (transformer_implementation.DataLoaderFactory.DataLoaderFactory method)
get_linear_schedule_with_warmup() (in module utils.training_loop)
get_num_params() (transformer_implementation.Decoder.Decoder method)
(transformer_implementation.Encoder.Encoder method)
grad_accumulation_steps (transformer_implementation.TransformerConfig.TransformerConfig attribute)
L
LayerNorm (class in transformer_implementation.blocks.layers.LayerNorm)
learning_rate (transformer_implementation.TransformerConfig.TransformerConfig attribute)
load_model() (transformer_implementation.Transformer.Transformer method)
M
max_epochs (transformer_implementation.TransformerConfig.TransformerConfig attribute)
max_iters (transformer_implementation.TransformerConfig.TransformerConfig attribute)
module
transformer_implementation
transformer_implementation.blocks
transformer_implementation.blocks.DecoderBlock
transformer_implementation.blocks.EncoderBlock
transformer_implementation.blocks.layers
transformer_implementation.blocks.layers.FeedForward
transformer_implementation.blocks.layers.LayerNorm
transformer_implementation.blocks.layers.MultiHeadAttention
transformer_implementation.DataLoaderFactory
transformer_implementation.Decoder
transformer_implementation.Encoder
transformer_implementation.Tokenizer
transformer_implementation.Transformer
transformer_implementation.TransformerConfig
utils
utils.estimate_loss
utils.plot_losses
utils.training_loop
MultiHeadAttention (class in transformer_implementation.blocks.layers.MultiHeadAttention)
N
n_embd (transformer_implementation.TransformerConfig.TransformerConfig attribute)
n_head (transformer_implementation.TransformerConfig.TransformerConfig attribute)
n_layer (transformer_implementation.TransformerConfig.TransformerConfig attribute)
P
PAD_IDX (transformer_implementation.TransformerConfig.TransformerConfig attribute)
plot_losses() (in module utils.plot_losses)
S
save_model() (transformer_implementation.Transformer.Transformer method)
scaled_dot_product_attention() (transformer_implementation.blocks.layers.MultiHeadAttention.MultiHeadAttention method)
sequence_cleaner() (transformer_implementation.Tokenizer.Tokenizer method)
sequence_padding() (transformer_implementation.Tokenizer.Tokenizer method)
T
tokenize() (transformer_implementation.Tokenizer.Tokenizer method)
tokenize_from_str() (transformer_implementation.Tokenizer.Tokenizer method)
Tokenizer (class in transformer_implementation.Tokenizer)
train_data_size (transformer_implementation.TransformerConfig.TransformerConfig attribute)
training_loop() (in module utils.training_loop)
Transformer (class in transformer_implementation.Transformer)
transformer_implementation
module
transformer_implementation.blocks
module
transformer_implementation.blocks.DecoderBlock
module
transformer_implementation.blocks.EncoderBlock
module
transformer_implementation.blocks.layers
module
transformer_implementation.blocks.layers.FeedForward
module
transformer_implementation.blocks.layers.LayerNorm
module
transformer_implementation.blocks.layers.MultiHeadAttention
module
transformer_implementation.DataLoaderFactory
module
transformer_implementation.Decoder
module
transformer_implementation.Encoder
module
transformer_implementation.Tokenizer
module
transformer_implementation.Transformer
module
transformer_implementation.TransformerConfig
module
TransformerConfig (class in transformer_implementation.TransformerConfig)
TranslationDataset (class in transformer_implementation.DataLoaderFactory)
U
utils
module
utils.estimate_loss
module
utils.plot_losses
module
utils.training_loop
module
V
vocab_size (transformer_implementation.TransformerConfig.TransformerConfig attribute)
vocab_size() (transformer_implementation.Tokenizer.Tokenizer method)
W
weight_decay (transformer_implementation.TransformerConfig.TransformerConfig attribute)
Transformer
Navigation
Contents:
transformer
Related Topics
Documentation overview
Quick search